Strategic Master Scheduling: Planning for Student Cohorts

A Linked Learning Alliance Learning Series

Join the Conversation Online!

Be sure to tag us -- @linked_learning -- and use the hashtag \#LinkedLearning

Welcome

Dan Storz
Senior Director, K-12
Engagement, Linked Learning Alliance

Introductions Jeff Thomas, San Diego USD

Cheryl HibbeIn, IlluminatED Collective

Recognizing the challenges in the field

Discussing the importance of the pre-planning process in master

Discussing the role of non-negotiables in the master scheduling process

Solving scenarios from the field

Questions

Interactive Opportunities in the Chat

Build on presented ideas

Share links to district examples of master scheduling strategies for cohorting and course sequencing

Challenges in the Field

Maintaining pathway purity/student cohorts in the context of transient populations, failed coursework, remediation, etc.

Scheduling special populations
Offering 3-4 years of CTE courses
Supporting PBL in smaller pathways including CPAs
Scheduling of highly transient populations
Scheduling common planning time

Challenges in the Field

Building space for dual college courses, WBL opportunities, athletics, credit recovery, etc.

Managing choice vs. need (students and teachers)
Choosing the right bell schedule for your needs/context: The pros and cons of $6-7-8,4 \times 4$ period day

Collaborating with stakeholder groups throughout the master schedule process

Developing timelines for master scheduling that are aligned to goals

Strategic Scheduling

A multi-layered collaborative process that ensures equity.

Operational

The human resource and finance processes support site strategic planning

Technical
Strategic use of structures, operations, and processes

Adaptive
Strategic planning for information, relationships, and identity

Visioning

Developing an urgent and evidence-based vision for student achievement

LINKED
LEARNING

Visioning

What does our ongoing data tell us kids need to know and be able to do this year?

Linked Learning Lives in Strategic Scheduling

College AND Career Readiness

Ensuring that students are college- AND career-ready is at the center of this work.

Ultimately this means that students need to graduate with a college qualifying GPA, coursework, SAT/ACT score, and an industry-recognized certification of skills to enter the workforce.

To achieve this goal, we must influence the student-teacher-content interaction in meaningful ways.

content

Teaching Teams

Teaching teams must be designed strategically and empowered to own the outcomes of their students.

Being empowered means that teachers work with administration to make recommendations about how the scheduling of their dedicated cohorts of students is enacted in the schedule.

The role of the administrator is to carry the vision and move the boulders for these teaching teams.

This requires a clear line of communication between admin and teachers so that there is trust in the scheduling process.

Choice vs. Structured Choice

Schools where larger numbers of students are entering high school behind in literacy and numeracy must be more strategic about how college and career readiness is assured. This is where choice and structured choice are at a crossroads.

- If we believe that engagement and mastery live in the ability for students to choose between a variety of courses on an articulation card, we build schedules and processes grounded in choice. Choice places certain demands on a schedule.
- If we believe that engagement and mastery live in the ability of grade-level teaching teams to make decisions about the structure and scheduling of students based on need, we build schedules and processes grounded in structured choice. Structured choice requires clear course pathways that remove demands on a schedule.

Articulation processes must align to vision

PATHWAYS STEP 1: Choose Your Theme. Rank your preference. 1 being your highest and 4 your lowest preference.
Students who choose a pathway will take a Foundation Course as their Freshmen Elective.
They will then complete the pathway by taking Intermediate and Advanced Courses in Grades 10-12.

Arts, Media, and Entertainment Graphic Design Strand	Arts, Media, and Entertainment Video Strand		Project Lead The Way Biomedical	Project Lead The Way Engineering	
Rank (1-4)	Rank (1-4)		Rank (1-4)		Rank (1-4)
Foundation (9th Grade) Course					
Photography 1,2 3691,3692 Meets Visual \& Performing Arts/Fine Arts Credit (F)	Video Production 1,2 8373/8374 Meets Visual \& Performing Arts/Fine Arts Credit (F)		Principals of Biomedical 3311/3312	Introduction to Design 1,2 3657,3658 Meets Visual \& Performing Arts/Fine Arts Credit (F)	
Intermediate Course (10th or 11th Grade)					
Computerized Graphic Design 1,2	Multimedia Production 1,2		Human Body Systems	Principles of Engineering 1,2	
Advanced Course (11th or 12th Grade)					
	Multimedia Production 3, 4		Medical Interventions Biomedical Innovation	Digital Electronics 1,2 Engineering Design \& Development 1,2	
PATHWAYS STEP 2: Choose Your Core Classes Preference . English, Biology, Mathematics and Physical Education are all Required for Freshmen. 2 Years of World Language are Required For Graduation. If you have meet the two year World Language Requirement, you have the option to choose a second elective.					
ENGLISH/BIOLOGY (Choose Standard or Advanced) MATHEMATICS (Choose Level)			PhYSICAL EdUCATION (choose One)		SpANISH (Choose Level)
Standard English 1,2 1540/1541 Biology 1,2 6111/6112 \qquad Advanced English 1,2 1540C/1541C Advanced Biology 1,2 6121/6122 Advanced	Integrated Math I A-B 4157/4158 Int Math I A-B Advanced 4165/4166 Prereq: Completion of Accelerated Math 7th with a grade of B or better Integrated Math II A-B $\quad 4159 / 4160$ Int Math II A-B Advanced 4167/4168 Prereq: Completion of Integrated Math I A-B Ad vanced with a grade of B or better				—Spanish 1-2 $2321 / 2322$ _Spanish 3-4 $2323 / 2324$ _Spanish 5-6 $2325 / 2326$
OPTION 2: Non-Pathway Choose Your Classes Preferences to Fill 6 Periods. English, Biology, Mathematics and Physical Education are all Required for Freshmen. 2 Years of World Language are Required For Graduation. If you have meet the two year World Language Requirement, you have the option to choose a second elective.					
B. English - Required for all Freshmen		ELECTIVE COURSE OFFERINGS			
__ English 1,2 $1540 / 1541$ __ English 1,2 Advanced $1540 \mathrm{C} / 1541 \mathrm{C}$		Choose a total 4 classes from either the " F " or Elective Credit categories. Number them 1-4 according to preference. (Special Education students and English Language Learners may be placed in academic support electives.)			
C. Mathematics - Required for all Freshmen					
\qquad Integrated Math IA-B 4157/4158 \qquad Integrated Math IA-B Advanced 4165/4166 Prereq: Completion of Accelerated Math 7th with a grade of B or better \qquad Integrated Math II A-B $4159 / 4160$					

School of Digital Media and Design/Kearny Complex My High School Plan

| Grade 9 | Grade 10 | Grade 11 | Grade 12 |
| :---: | :---: | :---: | :---: | :---: |
| Sem. or Adv. English 1-2
 or English 1-2 (P) | Sem. or Adv. English 3-4 (P)
 or English 3-4 (P) | Honors American Lit. (HP)
 or American Literature (P) | Cont. Voices 1-2 (P), AP English,
 English 101 or 105 Mesa College |
| Geometry 1-2 (P), Adv. Geo,
 Algebra 1-2 (P), or Int. Alg. 1-2 | Geometry 1-2, Intermediate Algebra 1-2
 (P), or Precalculus | Intermediate Algebra 1-2 (P),
 Precalculus 1-2 (P) | Precalculus (P) or Math Course
 at Mesa College |
| Advanced or Regular Earth Science | Advanced or Regular Biology | AP Environmental Science,
 or Marine Biology 1-2 | Chemistry or Honors Chemistry |

Non-Negotiables

\checkmark Grade-level teaching teams anchored by a common prep
Dedicated grade-level student cohorts anchored by a teaching team
Access to the core: ELA, math, history, science, pathway courses
Access to data-driven student supports connected to students needs

On your mind?

Scenario 1

The site has 30\% transiency and students often enroll not having taken the prerequisite CTE course.

How do you keep pathway sequence purity by grade level to ensure students are able to work on projects together while maintaining high concentrator rates?

NON-NEGOTIABLES
\checkmark Grade-level teaching teams anchored by a common prep
\checkmark Dedicated grade-level student cohorts anchored by a teaching team
\checkmark Access to the core: ELA, math, history, science, pathway courses
\checkmark Access to data-driven student supports connected to students needs

Antelope Valley

- In the Antelope Valley Union High School District, both the grade level teaching teams and cohort purity are essential elements to positive student outcomes.
- If a student enters a pathway at grade level (10th or 11th) and has not taken the foundational prerequisite courses in the pathway sequence, the student is still enrolled in the cohort core and CTE grade level courses.
- For example, if a student in the Eastside High School Biomedical Academy enters in 10th grade, they are placed in the second course in the PLTW sequence, Human Body Systems and not the 9th grade Principles of Biomedical Science.
- Thus, they become part of the cohort of three sophomore core classes and one CTE course.

10th Grade Biomed Academy Student

- The teachers reviewed his freshman grades, which were below average for the academy; he had also struggled in his 9th grade classes.
- The coordinator met with him and discussed the rigor and expectations for academy students. He still had a strong interest in being part of the academy.
- Although hesitant, the teachers felt the foundation of the LL approach was to serve students with similar challenges and that with the right support he would be successful.
- Although he did not take the introductory course, he was able to catch up with the CTE content. He will complete his sophomore year at grade level and with an improved GPA from his freshman year.
- Per the academy coordinator, this was due in large part to the cohort model. Since the student was placed in the core classes with the same group of students, it created an environment of additional support amongst his peers and teachers.

11th Grade Engineering Academy Student

- She had been part of a middle school summer engineering program several years before, and had transferred in from SOAR High School—our early college high school-to our academy.
- As a junior, she had not taken the two prerequisite engineering courses, but was still placed in the Digital Electronics course as part of the academy cohort and had not taken any engineering classes at SOAR.
- This meant she missed two prerequisite CTE courses, but the small learning community cohort of teachers and peers allowed her to level up. The student has been very successful in both her core and CTE classes.

LINKED
LEARNING

Considerations for CALPADS

- Placement decisions have an effect on CALPADS reporting.
- If the 11th grade student in my example was not placed in Digital Electronics and instead placed in Introductory Engineering Design—she would be placed in a course that did not count towards completion.
- This would not accurately reflect student success data for pathway completion.

Proactive Measures:

Supporting Grades, Attendance, and Discipline

Academy teachers share a common prep and meet regularly.
Contractual planning time such as teacher space (collaborative time for teacher choice), student free days, and half-day Wednesdays are offered.
Summer team planning to discuss student progress and align expectations vertically is offered.

Saturday school is used to cohort academy teachers and students for makeup attendance and classwork.

Academy tutors are deployed to support students' academic and technical work. CTE Pupil Services Technicians work with coordinators to identify and help the students who are falling behind.

The Support System Begins in 9th Grade

$\checkmark \quad$ Freshmen are assigned a mentor teacher who stays with them for four years.
Data on freshmen students is regularly pulled to allow mentor teachers to follow up on students who are not progressing before they get behind.
$\checkmark \quad$ To address math cohort purity, a summer math/algebra pilot program using the UCCI course Functional Design Through Algebra is offered for incoming freshmen. The CTE and core classes are scheduled back-to-back so that teachers can teamteach core within context of CTE.

Academy cohorts are scheduled first in the master schedule and then the other courses are built around them.

The cap across the cohort stays constant.

On your mind?

Scenario 2

Site has an increase of EL 1-2 in one grade level. They are on a 6-period day and the EL students all have to take district mandated additional EL course. How do you ensure equity and access to pathway classes and projects for this subgroup?

Similar: Special education students are not enrolled in CTE class because of additional study skills class

Similar: The need for additional dual enrollment, credit recovery, WBL, and athletics sections
\checkmark Grade-level teaching teams anchored by a common prep
\checkmark Dedicated grade-level student cohorts anchored by a teaching team
\checkmark Access to the core: ELA, math, history, science, pathway courses
\checkmark Access to data-driven student supports connected to students needs

Six-Period System

9th Grade
1. English
2. Math
3. Science
4. Pathway
5. PE
6. OPEN

10 ${ }^{\text {th }}$ Grade	11 ${ }^{\text {th }}$ Grade
1. English	1. English
2. Math	2. Math 3. Science 4. Science 5. Pathway 4. Pathway 6. History

$12^{\text {th }}$ Grade

1. English
2. Math
3. Science
4. Pathway
5. History
6. OPEN

Six-Period System

9th Grade
1. English
2. Math
3. Science
4. Pathway
5. PE
6. EL $1-2$

10th Grade	11 ${ }^{\text {th }}$ Grade
1. English	1. English
2. Math	2. Math 3. Science 4. Science 5. PEthway 6. History

12 ${ }^{\text {th }}$ Grade

1. English
2. Math
3. Science
4. Pathway
5. History
6. EL

Technical Solutions When Space Is Limited

- In 10th grade, the English Learner would have to take seven periods of coursework.
- If world language credits had not been met, I would support the student to pass a LOTE.
- One of the student's pathway courses would have to meet the VAPA credit; basically, two courses have to count as one.
- No electives beyond the pathway course could be taken over the four years.

9th Grade	10th Grade	11th Grade	12th Grade
1. English	1. English	1. English	1. English
2. Math	2. Math	2. Math	2. Math
3. Science	3. Science	3. Science	3. Science
4. Pathway	4. Pathway	4. Pathway	4. Pathway
5. PE	5. PE	5. History	5. History
6. OPEN	6. History	6. OPEN	6. OPEN

Six Pathways for Meeting the World Language Graduation Requirement

1. Completion of two years of district world language courses
2. Completion of two years of district-approved IWLS Courses
3. Passing an SAT II, AP, or IB exam
4. Formal schooling in a language other than English (LOTE)
5. Passing a LOTE Alternative Assessment with Principal Certification
6. Assessment by a college or university

UCCI Courses

UNIVERSITY OF CALIFORNIA CURRICULUM INTEGRATION

- C-Mathematics

Course Title \uparrow	Grade ${ }^{-}$	CTE Industry Sectors ${ }^{\text {- }}$	Career Pathway ${ }^{-}$
Abstract to Visual: Algebra 1 with Programming	9-10	Information and Communication Technologies	Software and Systems Development
Ag + Math = Calculated Sustainable Agriculture: Integrated Math 3 in Agriculture	10-12	Agriculture and Natural Resources	Agricultural Business
Algebra 2 for the 21st Century	9-12	Information and Communication Technologies	Software and Systems Development
Applied Math and Engineering: Algebra 2 and Trig for Engineers	9-12	Engineering and Architecture	Engineering Design
Constructing Algebra 2	9-12	Building and Construction Trades	Residential and Commercial Construction

Six-Period System

9th Grade
1. English
2. Math
3. Science
4. Pathway
5. PE
6. Study Skills

10th Grade	11th Grade
1. English	1. English 2. Math 3. Science 4. Pathway 5. PE Science 6. History

12th Grade

1. English
2. Math
3. Science
4. Pathway
5. History
6. Study Skills

Six-Period System

9th Grade
1. English
2. Math
3. Science
4. Pathway
5. PE
6. WL

10th Grade	11th Grade
1. English	1. English 2. Math 3. Science 4. Pathway 5. PE Science 6. History

12th Grade

1. English
2. Math
3. Science
4. Pathway
5. History
6. Dual

Was this Solution Fair, Equitable, and Just?

We solved the English Learner problem technically, but did we solve it equitably?

Reasons my solutions were not equitable:

- Students day is longer
- Students can't take any additional electives
- Students can't play sports or join clubs
- There is no room for any failure
- There is no room for any support beyond the mandated class

In my opinion, this schedule will never provide equity for ALL.

10th Grade: 4 x 4 Period System

10th Grade Fall	
OPEN	OPEN
Science 1	Science 2
Pathway 1	Pathway 2
PE 1	PE 2

10th Grade Spring

$\frac{\text { ELA 1 }}{\text { Math 1 }}$		ELA 2
SS 1		Math 2
SS 2		
OPEN	OPEN	

10th Grade: 4 x 4 Period System

10th Grade Fall
EL 1 Science 1 Pathway 1 PE 1

10th Grade Spring

ELA 1		ELA 2
Math 1	Math 2	
SS 1	SS 2	
OPEN	OPEN	

10th Grade: 4 x 4 Period System (A/B)

10th Grade Fall
EL 1/ELA 1
Science $1 /$ 1/Math 1
Pathway $\frac{1 / \text { SS } 1}{\text { PE } 1}$

10th Grade Spring
 EL2/ ELA 2
 Science 2/Math 2
 Pathway 2/SS 2

OPEN
OPEN

On your mind?

Scenario 3

Comprehensive high school with one Linked Learning pathway creates a master schedule without cohorting.

All students are grouped together in the same class but with different ELA teachers, making it impossible to plan together. IE ELA 91 section-Smith 1-section Moth 2-section Sanchez 1-section Michaels

NON-NEGOTIABLES
\checkmark Grade-level teaching teams anchored by a common prep
\checkmark Dedicated grade-level student cohorts anchored by a teaching team
\checkmark Access to the core: ELA, math, history, science, pathway courses
\checkmark Access to data-driven student supports connected to students needs

Schedule Pathway Student First

Non-Pathway Student 1	Pathway Student A	Pathway Student B	Non-Pathway Student 1	Non-Pathway Student 1

Schedule Pathway Student First

Non-Pathway Student 1	Pathway Student A	Pathway Student B	Non-Pathway Student 1	Non-Pathway Student 1
	English (Smith)	English(Smith)		
	SS (Jones)	SS (Jones)		
	CCTE (Corlett)	CCTE (Corlett)		
	Science (Lucas)	Science (Lucas)		

Schedule Pathway Student First

Non-Pathway Student 1	Pathway Student A	Pathway Student B	Non-Pathway Student 1	Non-Pathway Student 1
	English (Smith)	English(Smith)		
	SS (Jones)	SS (Jones)		
	CCTE (Corlett)	CCTE (Corlett)		
	Science (Lucas)	Science (Lucas)		

Schedule Pathway Student First

Non-Pathway Student 1	Pathway Student A	Pathway Student B	Non-Pathway Student 1	Non-Pathway Student 1
Math (Grey)	English (Smith)	English(Smith)	PE (Webber)	SS (Short)
PE (Spencer)	SS (Jones)	SS (Jones)	Math (Grey)	Spanish (Mora)
Spanish (Mora)	CCTE (Corlett)	CCTE (Corlett)	English (Ladd)	Math (Grey)
Science (Dodd)	Science (Lucas)	Science (Lucas)	Science (Dodd)	Science (Dodd)
English (Ladd)	PE (Spencer)	Math (Ridley)	Spanish (Mora)	English (Ladd)
SS (Short)	Math (Grey)	PE (Webber)	SS (Short)	PE (Webber)

Schedule Pathway Student First

Non-Pathway Student 1	Pathway Student A	Pathway Student B	Non-Pathway Student 1	Non-Pathway Student 1
PE (Spencer)	English (Smith)	English(Smith)	PE (Webber)	Science (Dodd)
Spanish (Mora)	SS (Jones)	SS (Jones)	SS (Short)	Spanish (Mora)
Math (Grey)	CCTE (Corlett)	CCTE (Corlett)	English (Ladd)	Math (Grey)
Science (Dodd)	Science (Lucas)	Science (Lucas)	Science (Dodd)	SS (Short)
English (Ladd)	PE (Webber)	Math (Ridley)	Spanish (Mora)	PE (Webber)
SS (Short)	Math (Grey)	PE (Spencer)	Math (Grey)	English (Ladd)

Protecting the Pathway

Student 1		Student 2	
English (Smith)	1541.903	English (Ladd)	1541.07
SS (Jones)	3417.920	SS (Short)	3417.10
CCTE (Corlett)	5182.901	Spanish (Mora)	6171.02
Science (Lucas)	6111.901	PE (Webber)	4151.09
PE (Webber)	4151.100	Science (Dodd)	6111.14
Math (Grey)	2131.102	Math (Grey)	2131.102

Protecting the Pathway

Student 1		Student 2	
English (Smith)	$\mathbf{1 5 4 1 . 9 0 3}$	English (Ladd)	1541.07
SS (Jones)	$\mathbf{3 4 1 7 . 9 2 0}$	SS (Short)	3417.10
CCTE (Corlett)	$\mathbf{5 1 8 2 . 9 0 1}$	Spanish (Mora)	6171.02
Science (Lucas)	$\mathbf{6 1 1 1 . 9 0 1}$	PE (Webber)	4151.09
PE (Webber)	4151.100	Science (Dodd)	6111.14
Math (Grey)	2131.102	Math (Grey)	2131.102

Protecting the Pathway

Student 1		Student 2	
English (Smith)	$\mathbf{1 5 4 1 . 9 0 3}$	English (Ladd)	1541.07
SS (Jones)	3417.920	SS (Short)	3417.10
CCTE (Corlett)	$\mathbf{5 1 8 2 . 9 0 1}$	Spanish (Mora)	6171.02
Science (Lucas)	$\mathbf{6 1 1 1 . 9 0 1}$	PE (Webber)	4151.09
PE (Webber)	4151.100	Science (Dodd)	6111.14
Math (Grey)	2131.102	Math (Grey)	2131.102

On your mind?

Additional Questions

Who should be included in scheduling team?

How are school sites effectively collaborating with stakeholder groups throughout the master schedule process?

How are sites developing timelines for master scheduling that are aligned to goals?

Scheduling Teams

Engaging Stakeholders

- Start early (September)
- Frame the process with the non-negotiables
- Be transparent, honest, and inclusive
- Build the master schedule frame without teacher names
- Use a structured timeline

Potential stakeholders:

Union representatives, department chairs, grade level teams, teaching staff (including special education and ELL supports), parents, guardians, and students

Master Schedule Development Timeline for

Site Managers building their 2019-2020 SY Master Schedule

October-November 2018	$\begin{gathered} \text { December } \\ 2018 \\ \hline \end{gathered}$	$\begin{gathered} \text { December - January } \\ 2018-19 \end{gathered}$	$\begin{gathered} \text { January } \\ 2019 \end{gathered}$	February 2019	$\begin{gathered} \hline \text { March } \\ 2019 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { March } \\ 2019 \\ \hline \end{gathered}$	$\begin{gathered} \text { March - April } \\ 2019 \end{gathered}$	$\begin{aligned} & \text { April } \\ & 2019 \\ & \hline \end{aligned}$
10/1/18-11/13/18 Enrollment Options Applications	12/10 2019-2020 school year initialized by IT. Sites can begin to Input course requests at all grade levels December 2018 Master Schedule Information to Secondary Principals.	Development of articulation resources and outreach visits to all feeder schools Master Schedule Team builds a draft of their sites Master Schedule with equity, access and supports for all students. Articulation and input of course requests into PowerSchool.		2/14 Open Labs to support course request entry Register in ERO 2/20(am), 21(pm), 26(am), 28(pm) Introduction of PowerSchool Master Schedule Build For anyone who is new or needs refresher to build master schedule inside PowerSchool Register in ERO School CHOICE lists for schools available (including Magnet, VEEP, Choice and PISC) 2/9 Principal submits SBB and confirms tentative staffing plan (Area Supt. may request earlier.) Principal submits Master Schedule Draft to Area Superintendent.	3/6 Introduction of PowerSchool Master Schedule Build For anyone who is new or needs refresher to build master schedule inside PowerSchool Register in ERO 3/6 Open Labs to support course request entry (morning or afternoon) Register in ERO HR collects "excess" and vacancy data to meet SDEA tentative agreement deadline All Course Request must be completed before their PowerSchool Master Schedule Building Workshop.	Hosted at IMC: $3 / 4$ with $3 / 5$ $3 / 7$ with $3 / 8$ $3 / 11$ with $3 / 12$ $3 / 14$ with $3 / 15$ Open to all Secondary Schools PowerSchool Master Schedule Building Workshop 2 day workshops at IMC for Administrators, Counselors \& Site Tech's. Day 1: instruction with hands-on Day 2: Open Lab with support Only Principal registers in ERO for the team.	Site Tech builds schedule according to specifications provided by site Master Schedule Team. In Partnership with Admin, Counselors adjust course request changes and enroll new students. Counselors verify correct placement by reviewing transcripts, receiving teacher input and resolving conflicts	4/3, 4/11, 4/18, 4/25 Open Labs available for building and troubleshooting master schedule. Scheduler runs and revisions are made to increase percentage of students with complete schedules. Register in ERO
$\begin{gathered} \text { May } \\ 2019 \\ \hline \end{gathered}$	$\begin{aligned} & \text { June } \\ & 2019 \end{aligned}$	$\begin{gathered} \text { August } \\ 2019 \\ \hline \end{gathered}$	$\begin{gathered} \text { August } \\ 2019 \end{gathered}$	$\begin{gathered} \text { August } \\ 2019 \end{gathered}$	$\begin{gathered} \text { August } \\ 2019 \end{gathered}$	KEY ITEMS: - The "PowerSchool Master Schedule Workshops" calendared in March, will cover the pros and cons of "copying" a school's 18-19 Master Schedule. If you plan to choose this option for the 19-20 scheduling year, you must meet with IT Staff for guidance through this process. - Reference "Master Schedule Fact Sheet for Principals" for important deadlines and action items to be completed before the March PD. - Verification of Course Requests: Counselors should verify that ALL students have ACCURATE and FULL courses requests prior to last day of school (TR: June 11, YR: July 19). This includes new students that pre-registered. - Preview Day: Sites must host a course request preview day. Students receive their complete course requests (end of May) and have opportunity to see a Counselor to make adjustments prior to June 1. - Last Day of School: All students in PowerSchool should have complete and verified course requests. PowerSchool Reports can be run to see if student requests are complete. August 2019: Minor changes to a student's course requests. Changes to a student's course request should only be due to summer school grades or new students adding. This should be completed prior to your school's "commit" day to give time to fix master schedule and move students (if necessary).		
5/2, 5/8, 5/14, 5/22, 5/30 Open Labs available for building and troubleshooting master schedule. Register in ERO In Partnership with Admin, Counselors continue to verify correct placement by reviewing transcripts, receiving teacher input and resolving conflicts. Students are consulted regarding any alternate courses. End of May All Sites must hold a Student Schedules Preview Day	6/3 Master Schedule Early "committing" of schedule with IT Support. 6/5, 6/20, 6/26 Open Labs for building \& troubleshooting master schedule Register in ERO Revisions to master schedule and student placement based upon semester grades.	8/1 Preferred deadline for early "committing" of schedule. $8 / 21$ Credentialed staff return. $8 / 21$ Final day to "commit" schedule; hand balancing and enrollment from this point forward.	$8 / 21$ Final balancing of all classes. Counseling Office closed to new enrollees; schedules printed for distribution on Monday. Help Desk on alert for individual assistance	$8 / 24,8 / 25$ Weekend "buffer" for schools with delayed process. No services provided by district. Plan ahead.	Monday, August 26 School begins. Class schedule distribution. Help Desk support as needed.			

On your mind?

Linked Learning Alliance Next Steps

